{ "cells": [ { "cell_type": "markdown", "id": "dd2628aa-71e6-47df-8932-01d4ded8d0e3", "metadata": {}, "source": [ "# Beispiele mit Jupyter" ] }, { "cell_type": "raw", "metadata": { "raw_mimetype": "text/restructuredtext" }, "source": [ ".. post:: 9025-05-26\n", " :author: B. A. Sylla\n", " :category: Howto\n", " :language: de\n", " :tags: Jupyter" ] }, { "cell_type": "markdown", "id": "d9403cb5-1e60-41f5-aebc-c208b2ce1ff2", "metadata": {}, "source": [ "Das ist ein symples Jupyter-Notebook." ] }, { "cell_type": "markdown", "id": "5ce27d1c-4f7a-47bd-931c-68caa46cb5c7", "metadata": {}, "source": [ "## Matplotlib" ] }, { "cell_type": "code", "execution_count": 1, "id": "19979cd0-8f87-4456-a49a-0cff672dd27c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mo 5. Mai 18:27:23 CEST 2025\n", "CPU times: user 348 ms, sys: 711 ms, total: 1.06 s\n", "Wall time: 290 ms\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9HklEQVR4nO3dd3wUdf7H8ddn00khBJIQei+hk0gXgoACKiBWVA71PFTEdtZTf4e9cHZFpYhyFjhPQUFQFCQU6aH3XkIJAQIhoYQk398fs3gRAyTZTWY3+3k+HvvI7s7M7nvYsJ/MzLeIMQallFK+y2F3AKWUUvbSQqCUUj5OC4FSSvk4LQRKKeXjtBAopZSP87c7QElUqVLF1KlTp0TbZmdnExoa6t5AZczb90Hz28/b98Hb84M9+5CSknLYGBN9/vNeWQjq1KnD8uXLS7RtcnIySUlJ7g1Uxrx9HzS//bx9H7w9P9izDyKyu7Dn9dSQUkr5OC0ESinl47QQKKWUj9NCoJRSPk4LgVJK+Ti3FAIRGS8ih0Rk3QWWi4i8JyLbRGSNiLQtsKy3iGx2LnvKHXmUUkoVnbuOCD4Del9keR+gofM2FPgIQET8gFHO5fHAIBGJd1MmpZRSReCWfgTGmHkiUuciq/QH/m2sMa8Xi0ikiMQBdYBtxpgdACIyybnuBnfkOt+q2ZM4sXous9I3khNRm7yKtQgIjSIkKIDwYH9qVAohOiwIESmNt1dKqeLJz4PMfZCxGzJ2wbHd0OZ2qFTHrW9TVh3KqgN7CzxOdT5X2PPtC3sBERmKdTRBbGwsycnJxQ6Rt3wy156aCeu/+v25TBPCXhPDNlOdUXkdWUhrKlXwJzrEQXSIEFPBQe0IB3UiHAT5e0aByMrKKtH+ewrNbz9v3wdvzw+F74P/2Uxi0+ZS+chyQk4dJOjMYRwm9/flBgdrM4I5WjnRrVnKqhAU9g1qLvL8n580ZgwwBiAxMdGUqEdeUhJzZ80gsVF1zh7eQf7RXZCxi+rHd9MwfQ39zywkM6AK80Ov4pv87ixOiyDrTA4Afg6hcWw4rWtF0qZmJG1qRVKvShgOR9kXB2/vVan57eft++Dt+aHAPuTnw655sOLfsHEa5OVATDxU6wSValt//UdaP6ViDVr6Bbg9S1kVglSgZoHHNYD9QOAFni81xr8CobVaQa1Wf1yQdxa2zCRixQSu3jaRq82XmPpJnGh6K8tDL2dl6glW7jnGtFX7+WrJHgBiI4K4okkMPZrE0rlBFUIC/UozulKqHAnIOQbz/gUrPrdO+QRHQsKd0HYwVG1RplnKqhBMBYY7rwG0B44bYw6ISDrQUETqAvuAW4BbyyjTH/kFQNNrrNvxVFj5JbLycyKmD+WKam25ot/7cGV78vMN29OzWLEng+TN6UxdtZ+JS/cS5O+gc4Mq9GgaQ6/4WGLCg23ZDaWUhzMGVn5Bu6VPQm421O0KPf4JTa6BAHu+N9xSCERkIpAEVBGRVGAEEABgjPkYmAH0BbYBJ4E7nctyRWQ4MBPwA8YbY9a7I5NLKtaApCeh62Owfgr8+CSM6QadH8bR9XEaxobTMDacmy+rxZncPJbuPMrsjYeYtTGNXzcd4p/fryepUTQ3JtbgiiaxBPprdw2lFHB0B0x7CHbOI7tiMyJvGw8xTexO5bZWQ4MusdwA919g2QysQuF5HH7Q4gaofwXMfBrmvwEbp8K170HtjgAE+ftxecNoLm8YzYhr49mSlsV3q/YxeUUqs784RFRoIANaV+fGxBo0jYuweYeUUrbIy4XFo2DOq9bZh2veZtWJOiR5QBEA7VlcNBWi4LqP4fZv4exp+LQ3TH8Uzpz4w2oiQuOq4TzZuwm/PXkFn95xGR3qRfH54l30eXc+/T9YwNTV+8nNy7dpR5RSZe7gWhjXA375p/VH5f1LIPEuEM/5+vXK+Qhs06AnDFsEv74ESz6GPYvhtv9CRLU/rerv56B7kxi6N4khIzuH71bt4/NFu3lw4kpGVgrhr13qclNiTUKD9CNQqtzaNB2+uQuCwuHGzyB+AHhgPyXPKUneIigM+rwGgydbnTzG9YRDGy+6SaXQQO7sXJdZf+/GmMEJVI0I5vlpG+j02q+8MXMz6SfOlFF4pVSZWToW/nM7xDaD+xZBs+s8sgiAFoKSq38F3DkD8nNh/FWwa8ElN3E4hCubVeWb+zrx7X2d6FAvilHJ2+j8+q+89MMGjmbnlEFwpVSpys+HX0bAjMeg4ZUwZBqE/Wl2SI+ihcAVcS3h7lkQFgufXwfrJhd504TalRg9OJHZf+/GtS2rMf63nXQdOYf3Zm8l+0zupV9AKeV5cnNgyj3w2ztWn4Cbv4RAz59bWQuBqyJrwV0zoXoCfHMnLBpVrM3rRYfx5k2tmPlwVzo3qMxbv2yh68g5fPrbTs7k5pVSaKWU250+Dl/eAGu/hiv+D655G/y84xqgFgJ3qBAFg7+Dpv2sZqa/jLA6jRRDw9hwRg9OZMqwTjSKDef5aRu44o25TFu9H1PM11JKlbGTR+HTq2H3bzDgY6sPkodeDyiMFgJ3CQi2WgUk3mUdFi58v0Qv06ZWJb76W3s+/2s7IisE8MDEldw6dglb0k5cemOlVNk7ewom3gKHN8Ot/4HWF+1W5ZG0ELiTww/6vmm1Dvjl/2DN1yV6GRHh8obRTB3ehZcGNGfDgUz6vjufl37YwInTZ90cWilVYnm5VvPQvUth4FiribkX8o4TWN7E4YDrRkP2YfjuPgitYrUwKgE/h3B7h9r0bRHHv2Zu4pPfdvL96v1cVxe6GaPzJihlJ2NgxqOweQb0GQnNBtidqMT0iKA0+AfBLV9CdBP4z2DYv8qll4sKDeTVgS35blhnqlUMZsyaM9w6dgl7jpx0T16lVPHNfR1SPoMuf4f299idxiVaCEpLcEW47RsIqWS1JDi60+WXbFUzkinDOnNHs0DW7TvOVe/MY/yCneTl68VkpcrU8k8h+VVodas1cqiX00JQmiLi4PbJVqezLwZCVrrLL+lwCEk1A5j5SFc61IvihR82cNPoRWxPz3JDYKXUJW2aDtP/Dg16Qb/3vKp10IVoISht0Y3g1q8h8wBMvNkatM4NqkWGMP6Oy3jrplZsO5RFn3fn8/Hc7TqgnVKlad8K6+JwXGu4aYI1kmg5oIWgLNRsB9ePhX0p8PMzbntZEWFg2xr88veudG8czWs/buL6jxex63C2295DKeV0KgP+OwRCo63BJr2gx3BRaSEoK02vhU4PwLJxsO5bt750THgwH9+ewPuD2rAzPYu+783n6+V7tSOaUu5iDHw3DDL3ww2fWq0ByxG3FAIR6S0im0Vkm4g8Vcjyx0VklfO2TkTyRCTKuWyXiKx1Llvujjweq8cIqNkepj4Ih7e59aVFhGtbVeOnh7vSskZFnvhmDcO/Wsnxk9rvQCmXLfrAaiba60WoeZndadzO5UIgIn7AKKAPEA8MEpH4gusYY/5ljGltjGkN/AOYa4w5WmCV7s7lia7m8Wh+AXDDePALtA4xz55y+1tUiwzhy7s78GTvJsxcf5De785j0fYjbn8fpXzGniUw6zlrTuEO99mdplS444igHbDNGLPDGJMDTAL6X2T9QcBEN7yvd6pYAwaOgbR18OMTpfIWfg7hvqT6TBnWmZAAP24dt5jXf9rEWb2QrFTxZB+xBpOMqA79R5WLFkKFEVfPI4vIDUBvY8zdzseDgfbGmOGFrFsBSAUanDsiEJGdQAZggNHGmDEXeJ+hwFCA2NjYhEmTJpUob1ZWFmFhYSXa1p3q7vic2nu+YWOTh0mr2r1Y2xZnH87kGr7clMO81FwaVXJwX6sgKgXbe2nIUz6DkvL2/OD9+1Am+U0+Lda+RKWM1axo+zpZ4Q3c+vJ2fAbdu3dPKfTMizHGpRtwIzCuwOPBwPsXWPdmYNp5z1Vz/owBVgNdL/WeCQkJpqTmzJlT4m3dKvesMeP7GPNSVWPSNhZr05Lsw3crU03T//vRtH3hZzN/S3qxt3cnj/kMSsjb8xvj/ftQJvnnvWHMiAhjlowplZe34zMAlptCvlPd8adhKlCzwOMawP4LrHsL550WMsbsd/48BEzBOtVU/vn5w/WfQEAF63pBTukOF9G/dXWmDu9MVGggg8cv4Z1ZW7RHslIXsnuhNTd5s4Fw2d12pyl17igEy4CGIlJXRAKxvuynnr+SiFQEugHfF3guVETCz90HrgTWuSGTd4iIs/oXpG+yfulKWYOYcL4f3pnrWlfnnVlbuePTpRzJ0vmSlfqDnGxrwMjIWnDtu+X2ukBBLhcCY0wuMByYCWwEvjbGrBeRe0Xk3gKrXgf8bIwp2NspFlggIquBpcB0Y8xPrmbyKvWvgMS/wuIPYc/iUn+7CoH+vHlTK14d2IIlO49y9XsLWLEno9TfVymvMfsFyNgF/T+E4Ai705QJt1w1NMbMMMY0MsbUN8a87HzuY2PMxwXW+cwYc8t52+0wxrRy3pqd29bn9HoeKtaE7+8vlSal5xMRBrWrxZRhnQjwF24ZvZhJS/eU+vsq5fF2L4QlH0O7oVCns91pyoz2LPYEQeHW4FVHtsGcV8rsbZtVq8jU+7vQvl4UT01ey7PfrSUnV5uYKh+Vc9L6YyyyttX504doIfAU9btD2yFWD8bUsutgXSk0kE/vuIx7utbji8V7uG3cYg6dcM/AeEp5lTkvw9Ed0P8DCPLeprUloYXAk1z5IoTHWWOauGmU0qLw93Pwj75NeW9QG9buO06/939j1d5jZfb+StluzxJYNMq6Xle3q91pypwWAk8SXBGufc+aBHvu62X+9v1aVWPyfZ3x9xNuGr2Ib1NSyzyDUmXu7CnrlFDFmtb1Oh+khcDTNOwJrW+H3961xj4vY/HVIpg2vAuJtSvx6H9X89qPm8jX/gaqPJvzChzZCv3eta7X+SAtBJ7oqpchLMb6KyW37Nv5VwoNZMJd7bitfS0+nrude75IIftMbpnnUKrUpS63rsu1HWI15fZRWgg8UUgkXPMOHNpgHRnYIMDPwUsDmvN8v2bM3pjG9R8tZN+x0m/aqlSZycu1hoQPj7Ouz/kwLQSeqnFvaNoP5r8JGbttiSAiDOlUh8/ubMe+Y6fo/8ECUnZr5zNVTiwbC4fWQ+/XrOtzPkwLgSe76hUQB8x82tYYXRtFM2VYZ0KD/Bk0ZjHfrdxnax6lXHYizbo2UP8Ka/ZAH6eFwJNF1oTLH4VNP8DWWbZGaRATxnfDOtO2diQP/2cV78zaolNhKu81a4TVWqjPv3xiLKFL0ULg6To9AFH1rUlsbLhwXFCl0ED+fVd7rm9bg3dmbeXRr1dzJjfP1kxKFduexbB6ovV/q4p75xjwVloIPJ1/EPQZCUe3W60bbBbo7+CNG1vy916NmLxyH3/5ZCnHTubYHUuposnLhemPQUQN6PqY3Wk8hhYCb9CwpzVf6rw34Nheu9MgIjzYoyHv3NyalXuOMfCjhew+kn3pDZWy2/LxkLbWaqIdGGp3Go+hhcBbXPUKmHz4+Rm7k/xuQJvqfHF3e45m53DdhwtJ2X3U7khKXVhWujXvR70kiL/YtOq+RwuBt6hU27pwvOF7Kh1dZXea37WrG8Xk+zoREezPoLFL+HHtAbsjKVW42c/B2ZN6gbgQWgi8SacHoVJdGmwbC7mec16+XnQYk4d1pnm1CIZ9tYJPFuy0O5JSf7R3Gaz8AjoOg+hGdqfxOG4pBCLSW0Q2i8g2EXmqkOVJInJcRFY5b/8s6raqgIBg6PM6oSdTYclHdqf5g6jQQL76WweujI/lxR828MK0DTpGkfIM+fkw4zEIrwZdn7A7jUdyuRCIiB8wCugDxAODRCS+kFXnG2NaO28vFHNbdU6jqzgSlWhdOM4+YneaPwgO8OPD2xK4s3Mdxv+2k/u/WsHps9q8VNls7ddwYJU1sqiPzTNQVO44ImgHbHNOO5kDTAKKeiXGlW191vb6QyAnC+aNtDvKn/g5hBHXNuPZq5vy47qD3DZuCRnZnnMaS/mYs6dg9otQrQ00v8HuNB7L3w2vUR0o2KYxFWhfyHodnZPU7wceM8asL8a2iMhQYChAbGwsycnJJQqblZVV4m09RZaJYn/VXlRdOpZlphWnKlSzO9KfNACGtQ5izJoM+rw5i78nBhNTwfq7w9s/A2/PD96/D0XNX2v3N9TLTGVlvfs4Pm9e6QcrBo/6DIwxLt2AG4FxBR4PBt4/b50IIMx5vy+wtajbFnZLSEgwJTVnzpwSb+sp5syZY0zmQWNeijNm0u12x7mopTuPmJbPzTQJL/5s1uw9Zozx/s/A2/Mb4/37UKT8WenGvFLDmK9uKfU8JWHHZwAsN4V8p7rj1FAqULPA4xpYf/UXLDaZxpgs5/0ZQICIVCnKtuoCwmOh80Owcao1zZ6HuqxOFN/e15Egfz9uHrOI5M2H7I6kfMXc1yEnG3r65qxjxeGOQrAMaCgidUUkELgFmFpwBRGpKmI13BWRds73PVKUbdVFdBoOYVXh52fBgweAaxATzpRhnahTOZS7JyxnfupZuyOp8u7wNqsXccId2ly0CFwuBMaYXGA4MBPYCHxtjFkvIveKyL3O1W4A1jmvEbwHnDtWK3RbVzP5jMBQuOIZSF0KG763O81FxUQE8597OtChXmU+WZfD+7O36uilqvTMGgH+wZCkLdKLwh0Xi8+d7plx3nMfF7j/AVDoiGmFbauKofVtsPgjmPUcNO4L/oF2J7qg8OAAxt9xGXd8+Atv/rKF/cdP82L/Zvj7ab9G5Ua7F1lDt1/xrDXlq7ok/R/o7Rx+0OsFyNgJyz+xO80lBfo7+FuLQIYl1Wfi0j3c+0UKp3K0r4FyE2OsU6Xh1aDD/Xan8RpaCMqDBj2tgbTmvg6njtmd5pJEhCd6N+HF/s2YvekQg8Yu5qj2NVDusH4K7FtuHQ0EVrA7jdfQQlAeiECvF60iMP9Nu9MU2eCOdfjotgQ2Hsjk+o8WsufISbsjKW+Wm2OdIo1tDq1usTuNV9FCUF7EtbR++ZeMhuPeM6dw7+ZV+dI5lPXAjxaybt9xuyMpb7ViAhzbbQ0l4fCzO41X0UJQniQ9Zc1ZMO9fdicplsTf+xo4uHn0IuZuSbc7kvI2OdkwdyTU7gL1e9idxutoIShPKtWBhCGw8nM4usPuNMXSICacycM6UatyKH/9bBnfpKTaHUl5k6VjIPsQ9Pg/nWugBLQQlDddHwdHACS/ZneSYouNCOZrZ1+Dx/67WvsaqKI5fRwWvAMNr4RaHexO45W0EJQ34VWh/VBY8zWkbbA7TbGd62swsE113vxlC09PWUduXr7dsZQnW/gBnD5mtRRSJaKFoDzq/DAEhcOcl+1OUiKB/g7evKkV93e3+hoM/TyFkzm5dsdSnigrHRaNgmbXQVwru9N4LS0E5VGFKOg43OpduS/F7jQlIiI8flUTXhrQnOTNhxg0ZjGHs87YHUt5mgVvQ+4pSHra7iReTQtBedVxGFSoDL++ZHcSl9zeoTajByeyOe0EAz9cyM7D2XZHUp7i+D5YNg5a3aoDy7lIC0F5FRQOXR6B7b/Czvl2p3FJr/hYJv6tA1lnchn44W+k7D5qdyTlCeaNtJpLJz1pdxKvp4WgPLvsbgiPg19f9OhhqouiTa1KTL6vExVDAhg0dgnT1xywO5KyUcjJA7Dic0i8EyJr2R3H62khKM8CQqDbE7B3CWz9xe40LqtTJZTJwzrTsnpF7v9qBWPmbdfmpT6qzq6J4BcIlz9md5RyQQtBeddmsNXR7NcXIN/7m2FGhQbyxd3tubpFHK/M2MQ/v1+vzUt9TdoGYg7Ngw73WjP1KZe5pRCISG8R2Swi20TkTzNBiMhtIrLGeVsoIq0KLNslImtFZJWILHdHHlWAXwAk/QMOrrVaEZUDwQF+vD+oDfd0rcfni3dzz+cpZJ/R5qU+I/lV8vyCodODdicpN1wuBCLiB4wC+gDxwCARiT9vtZ1AN2NMS+BFYMx5y7sbY1obYxJdzaMK0fwGqNzA6m1cDo4KABwO4R99m/LigObM2XyIm8csIi3ztN2xVGk7uBY2TiW1xrVWM2nlFu44ImgHbDPG7DDG5ACTgP4FVzDGLDTGZDgfLsaapF6VFT9/6PYkHFoPm6bZncatBneozbghiexMz6b/B7+xfr+OXlquzX0dgiJIrdH/0uuqIhNXL7aJyA1Ab2PM3c7Hg4H2xpjhF1j/MaBJgfV3AhmAAUYbY84/Wji33VBgKEBsbGzCpEmTSpQ3KyuLsLCwEm3rKUq0DyaPdksfIN/hz/LEd0DsuzxUGp/Bnsw83llxhuyzhntbBdEmxi2zsBbKZ3+HbBZ2YgeJKY+wq/bNrIvu53X5z2fHZ9C9e/eUQs+8GGNcugE3AuMKPB4MvH+BdbtjTVJfucBz1Zw/Y4DVQNdLvWdCQoIpqTlz5pR4W09R4n1Y/bUxIyKMWTfZrXmKq7Q+g7Tjp8y17883dZ76wYydt93k5+eXyvv49O+QnSbeaswrNY05meGd+c9jxz4Ay00h36nu+LMwFahZ4HENYP/5K4lIS2Ac0N8Yc6RAIdrv/HkImIJ1qkmVhuYDoUpjSH693FwrKCgmIpj/DO3IVfFVeWn6Rp79bh1ntUVR+XBgjdXYoeMwCIm0O025445CsAxoKCJ1RSQQuAWYWnAFEakFTAYGG2O2FHg+VETCz90HrgTWuSGTKozDz+pXkL4RNnxnd5pSERLox4e3teXebvX5cske7vpsGcdPnbU7lnJV8msQXBHa32t3knLJ5UJgjMkFhgMzsU77fG2MWS8i94rIuU/tn0Bl4MPzmonGAgtEZDWwFJhujPnJ1UzqIppdZx0VzH0d8vPsTlMqHA7hqT5NGHl9SxbvOMJ1o35je3qW3bFUSR1YDZunQ4f79WiglLjlipoxZgYw47znPi5w/27g7kK22wHo2LFlyeFnjc3yzV3WUUHz6+1OVGpuuqwmdaqEcu8XKQwY9Rsf3NqWbo2i7Y6liuvc0UAHPRooLdqz2BfFXwfRTZzXCsrnUcE57epGMXV4Z6pHhnDnp0sZN3+HDkvhTfavhM0zoOMDVjFQpUILgS9yOKx+BYc3w/opdqcpdTUqVeDb+zpxVTPrIvLj36zhTG75LoDlRvLrEBwJ7e+xO0m5poXAV8UPgOim5fpaQUGhQf6MurUtD/dsyDcpqQwas5hD2hPZs+1bAVt+hE7DITjC7jTlmhYCX+VwWNcKDm+BdZPtTlMmHA7h4Z6N+Oi2tmw8cIJr3l+gcxt4srkjIaQStNOjgdKmhcCXNe1vHRXM+1e57FdwIX1axDHl/k5UCPTj5tGLmbBwl1438DQHVltHAx3v16OBMqCFwJc5HNDtcetawcbv7U5TpppUjeD74V3o1iiaEVPX8+jXqzmVU/5PkXmNuSOti8PthtqdxCdoIfB18QOgSiOY61tHBQAVQwIY+5dEHunZiCmr9jHwo4XsOXLS7ljq4DqrF3GHYdpSqIxoIfB1Dj/o+rg1Munm6XanKXMOh/BQz4aMH3IZ+zJOcu0HC5iz6ZDdsXzbvJEQFKEthcqQFgIFzQZCVD2rBZGPnivv3iSGaQ90oVpkCHd+toxXf9yo4xTZIW0DbPjeKgIhlexO4zO0EChrvoLLH7Mm/djiuyN81K4cypRhnbi1fS1Gz93BLWMWs+/YKbtj+Zb5b0BgmHVaSJUZLQTK0vImiKzt00cFYE2D+cp1LXhvUBs2HzzB1e/NZ9aGNLtj+YZ0Z1Pmdn/T2cfKmBYCZfELgMsftbr0b5tldxrb9WtVjWkPdKF6ZAh3/3s5L/2wgZxcPVVUqua/AQEh0LHQOa1UKdJCoP6n1SCoWNMa5MuHjwrOqVsllG/v68RfOtZm3IKd3PjxQnboKKal48h2WPtfuOyvEFrF7jQ+RwuB+h//QOjyCOxbDjvm2J3GIwQH+PFC/+Z8dFtbdh05ydXvLWDOnrPaAc3d5r8JfoHQ6UG7k/gkLQTqj9rcDuHVrMG+9Mvud31axDHz4a4k1qnEhA053D1hOeknztgdq3w4uhNWT4LEuyAsxu40PkkLgfoj/yDrqGDvYtg13+40HqVqxWAm3NmO25oEMn/bYXq/M08vJLvDgrfA4a9HAzZySyEQkd4isllEtonIU4UsFxF5z7l8jYi0Leq2ygZt/wJhVa1u/uoPHA6hV50AfnigC7ERwdz97+U89e0aTpzW6TBL5NgeWPWV9TsXEWd3Gp/lciEQET9gFNAHiAcGiUj8eav1ARo6b0OBj4qxrSprAcHQ+SHriGD3IrvTeKRGseFMub8T93arz9fL93Ll2/P4dZMeHRTbgrcBgS4P253Ep7njiKAdsM0Ys8MYkwNMAvqft05/4N/GshiIFJG4Im6r7JBwB4RGW939VaGC/P14qk8TJg/rTERwAHd9tpyHJq3kSJZeOyiS4/tg5RfWdamKNexO49HO5uUzb0s6T327hoPH3T+PhjvmLK4O7C3wOBVoX4R1qhdxWwBEZCjW0QSxsbEkJyeXKGxWVlaJt/UUZbUPNWP7Un/7BFKmjuZERGO3va63fwaF5X+8leGHHQFMW72fX9fv57b4INpX9UNE7Al5CZ7wGTTYOoZq+Xks9e/I6WJm8YT8rrrUPuTmGzYcyWPZwTxWHMol+ywE+0G1/EO0jHbLdPO/c8erFfabfn5zkwutU5RtrSeNGQOMAUhMTDRJSUnFiPg/ycnJlHRbT1Fm+3AmEd6ZRsKJ2dDPfQOAeftncKH8Pa+A+w6e4Ilv1/Dx6mNsy4nhuX7NqFGpQtmHvATbP4MTB2HBbGg9iA59bi725rbnd4PC9uFsXj6/bTvM9DUH+HlDGsdPnSUsyJ9ezarRt0UcXRtFExzg5/Ys7igEqUDNAo9rAPuLuE5gEbZVdgkKsyYG+fVFq8dxtTZ2J/J4jauGM/m+Tnz6207e/HkLPd+ay7CkBgztWq9U/gN7rYXvQ14OdPm73Ulsl5uXz+IdR/lhzX5+Wn+QYyfPEh7kT6/4WPq2iKNLwyql/rvjjkKwDGgoInWBfcAtwK3nrTMVGC4ik7BO/Rw3xhwQkfQibKvs1G4oLHwP5r0Bt3xpdxqv4OcQ7r68Hn1axPHy9A289csWvklJZcS18fRoGmt3PPtlpcPy8dDiJqhc3+40tsjPN2w+mses79by07qDHM7KITTQj57xsVzTshpdG1UhyL/s/nBwuRAYY3JFZDgwE/ADxhtj1ovIvc7lHwMzgL7ANuAkcOfFtnU1k3Kj4AhrJMjkV60JQ6o2tzuR16geGcKHtyWwYOthRkxdx18nLOeKJjH885p46lQJtTuefRZ9AGdPQdfH7E5SpowxrNp7jGmrDzB97X7SMs8QHJBKjyaxXNMyju5NYmw7anTLFQdjzAysL/uCz31c4L4B7i/qtsrDtL8HFn5gzW180wS703idLg2r8ONDXZmwcBfvzNrClW/P447OdRiWVJ/ICoF2xytbJ4/CsnHQfCBUaWh3mlJnjGHjgRNMW7Ofaav3k5pxikA/B90aR1M/4BgPDEwiNMi9F35Lwv4EyvOFVLKKwfw34dBGiGlqdyKvE+jv4G9d69GvdTVG/rSZsfN3MHHpHu5Lqs+dneoSEugj1w8Wfwg5WdaseOXY1rQTTFtzgB/W7GdHejZ+DqFLgyo83LMRveJjqRgSQHJyskcUAdBCoIqq4/2w+CPrWsENn9idxmvFRgTz5k2t+FvXuoz8aTMjf9rMhIW7eKhHI25KrIG/Xzke9eXUMVgyGpr2K5d/TOw6nM0Pa/bzw5oDbDp4AhHoULcyf+1Sl97NqlI5LMjuiBekhUAVTYUoaHe31doj6SmfOKwvTU2qRjD+jstYuvMor/24kaenrGXcgh083LMRV7eIw8/hmf0PXLJkNJzJLFdHA7sOZzN97QFmrD3A+v2ZACTWrsRz18bTt0UcMRHBNicsGi0Equg6PgBLxliniK77+NLrq0tqVzeKb+/rxC8b0hg5czMPTlzJWz9v5t5u9bmubfUybTlSqk5nWqeFGveFuJZ2p3HJ7iPWl//0Nf/78m9dM5Jn+jbl6pZxVIsMsTlh8WkhUEUXFm1NHLL4I+uvOh9t+uduIsKVzarSo2ksP68/yIfJ23lq8lrembWVuy+vy63ta1Eh0Mv/qy4dDaePQbcn7E5SbMYYth7K4se1B/lp/UE2Hvjfl/+zVzelT4s4qnvhl39BXv7bpcpcpwetVh/z34QBH9qdplzxcwh9WsTRu3lV5m89zIfJ23hp+kZGzdnG4I51uLVdLapW9I5TDX9w5gQsGgUNr/KaTonGGNakHuen9QeZue4gOw5nIwIJtSqVmy//grQQqOIJj7UmEFky2moHHlXP7kTljojQtVE0XRtFk7I7g4+St/H+r1sZNWcbvZrGMrhjbTrVr+yx4xj9ydIxcCoDkp60O8lFnT6bx6LtR/hlYxq/bjzEwczT+DmEjvUqc1eXulwZH+s15/yLSwuBKr7OD1k9Q+e/Cf1H2Z2mXEuoXYlxQy5j95Fsvlqyh6+X7+Wn9QepVyWUW9vX4saEmlSsEGB3zAs7k2X1QWnQC6on2J3mTw6dOE3ypnRmbUxj/tbDnDqbR4VAP7o2jKZnfCw9m8b4RF8PLQSq+MKrWsNULx0Llz8GUXXtTlTu1a4cyj/6NuWRXo34cd0Bvli8h5emb2TkzM10bxxNv1bV6dHUvp6pF7RsLJw6arU08wA5ufmk7M5g7pZ05m1JZ4PzfH9cxWBuSKhBj6YxdKhX2fP+HUuZFgJVMp0fhuWfOo8KPrA7jc8IDvDjujY1uK5NDTbsz+S/KXv5Yc0BZq5PIzTQj17xsfRrXY3LG0YTYHefhDNZVnPj+j2gRqItEfLzrQu9i3ccYf7WdBZtP0J2Th7+DiGhdiUev6oxSY2jiY+L8J5TbaVAC4EqmYg4SBhinSLq+jhUqm13Ip8TXy2CEdWa8ezV8SzZcYSpq/fz47qDfLdqP5EVAujaMJqkxtFc3jCa6HAbOjMt/wROHinTo4H8fMOWQydYvP0IS3YeZcnOoxzNzgGgZlQI17WtTteG0XSsX5nwYA8+pVbGtBCokuvyCKR8Zh0V9HvP7jQ+y88hdGpQhU4NqvBC/+bM25LOjLUHmLc1namrrVHdW1SvSLdG0XRrHE2rGpGlHyonG357D+p1h5rtSu1tMrJzWJV6jFV7jrE69Rir9h7j2Elr/ugalULo3jiGDvWi6FCvMjWjPG9eCE+hhUCVXEQ1aDsEUj61WhBF1rI7kc8L9HdYFznjY8nPN2w4kMncLenM3ZzOR3O388GcbQT6O6gVBvOzNtC6ZiRtakVSPTLEvadGlo+Hk4fddjRgjOHA8dNsPniCzWknSF59mhHL5rD7yEkARKBRTDhXxVflsrpRtK8bpV/8xaCFQLmmyyOwYgLMfwuufcfuNKoAh0NoXr0izatX5P7uDTh+6iyLth9hxZ4Mktfu4sslu/lkwU4AqoQF0axaBPWiQ6kXHUb96FDqR4cREx5U/AKRcxJ+exfqdoNaHYq16fFTZ9l79CSpGSdJzTjFjsPZbHF++Z84nfv7elHBQrv6EdxyWS1a14ykRY2KhHnIAG7eSP/llGsqVoc2g2HFv+HyRyGy5qW3UbaoGBJA7+ZV6d28Kp0qpNH58q5sPniClXuPsXJPBlvSTrBs11FO5uT9vk1YkD81oyoQHR5ElbBAosOCnPeDiAoNJDjAjyB/B0EBDoL8rfsRq8YSlp1OWpuHOXEoi5zcfHLy8snJzSfz1FmOnswhIzuHo85bxskcDhw/zd6jJ8ks8GUPEBHsT5OqEQxoXZ1GVcNpUjWcRjHhrFz6G0lJntcc1VtpIVCu6/KIVQgWvAXXvG13GlVEAX6O348YBnewLvYbYziYeZod6dlsT89iR3o2e4+e5HDWGbYfyiI96ww5ufkXfM0gcpgf9Bar85tx21engLkXXDfQz0FUaCBRoYHERATRtlYlakaFULNSBWpGVaBGpRAqhgT4dGuesuJSIRCRKOA/QB1gF3CTMSbjvHVqAv8GqgL5wBhjzLvOZc8BfwPSnas/7ZyoRnmTyJrQdjCs+NwqCnqtwGuJCHEVQ4irGELnBlX+tNwYQ+bpXA5nnSEjO4czufmcyc3jzNl8zuTmU3vLp8RsPMbqTm/zRkwrAvyEIH8Hgf4OAvwcRAQH/P7lXyHQT7/kPYSrRwRPAbONMa+JyFPOx+f3I88FHjXGrBCRcCBFRH4xxmxwLn/bGPOGizmU3S5/FFZ+Yc1i1u99u9OoUiIiVAwJoGJIAESftzAnG2Z9BnW70avPQDviqRJytcdJf+Dc3IUTgAHnr2CMOWCMWeG8fwLYCFR38X2Vp6lYw+ptvPJLOLrD7jTKDkvHQHY6XPGs3UlUMYk1nXAJNxY5ZoyJLPA4wxhT6SLr1wHmAc2NMZnOU0N3AJnAcqwjh4wLbDsUGAoQGxubMGnSpBJlzsrKIiwsrETbegpP3YfAM0dpv+Qe0qO7sKnpQxdcz1PzF5W35wf374Nf7kk6LB5KZkQj1rb8p9te90L0MyiZ7t27pxhj/tzN2xhz0RswC1hXyK0/cOy8dTMu8jphQAowsMBzsYAf1pHJy8D4S+UxxpCQkGBKas6cOSXe1lN49D789LQxz0Uak77lgqt4dP4i8Pb8xpTCPiS/bsyICGNSU9z7uhegn0HJAMtNId+plzw1ZIzpaYxpXsjteyBNROIAnD8PFfYaIhIAfAt8aYyZXOC104wxecaYfGAsUHpdEFXZ6Pww+IdA8mt2J1Fl5VSGNcJo46uhelu706gScPUawVRgiPP+EOD781cQq1nAJ8BGY8xb5y2LK/DwOqwjDeXNwqKh/VBY9y2kbbj0+sr7LRoFZ45D96ftTqJKyNVC8BrQS0S2Ar2cjxGRaiJyrhloZ2AwcIWIrHLe+jqXjRSRtSKyBugOPOJiHuUJOj0IgWGQ/KrdSVRpyz5iTV0aPwCqNrc7jSohl5qPGmOOAD0KeX4/0Nd5fwFQaGNhY8xgV95feagKUdDhPpg3Eg6s8frJytVFLHzPajaa9A+7kygX2DxguSq3Ot4PwRX1qKA8yzpkNRltcQPENLE7jXKBFgJVOkIioeMDsHkG7EuxO40qDQvegdzT0M0zZh9TJaeFQJWeDvdCSBTMecXuJMrdMg9YE8+0GgRVGtidRrlIC4EqPUHh1kT322bB7oV2p1HuNG8k5Odas9Mpr6eFQJWudkMhPA5+GQEu9GJXHuTwNkiZAAl3QlRdu9MoN9BCoEpXYAVrlqrUpdb1AuX9fn0R/IOh2xN2J1FuooVAlb7Wt0PlhjD7BcjPu/T6ynPtWwEbvrNahYXF2J1GuYkWAlX6/Pyhx/9B+iZYPdHuNMoVs56DCpWh0wN2J1FupIVAlY2m/aB6Asx5BUfeGbvTqJLY/ivsnGtdIA6OsDuNciMtBKpsiEDP5yFzH9X36bUCr5Ofbx0NRNaCxLvsTqPcTAuBKjt1L4cGPam15xs4dczuNKo4NkyBA6uh+zPgH2R3GuVmWghU2eoxgoDcLPjtXbuTqKLKOwuzX4SYZtDiRrvTqFKghUCVrbiWpMV0tUaszDxgdxpVFCmfQcZO6DkCHH52p1GlQAuBKnM7695m9Uqdq5PXeLwzWTB3JNTqBA2vtDuNKiVaCFSZOx1S1brguOJzSN9idxx1MYs/hOxD0Ot564K/KpdcKgQiEiUiv4jIVufPQieuF5FdzgloVonI8uJur8qhro9DQAX4+Vm7k6gLyTxgjTDa9FqoqbPIlmeuHhE8Bcw2xjQEZjsfX0h3Y0xrY0xiCbdX5UlYNHR7HLbOtAalU55n9vOQfxZ6vWh3ElXKXC0E/YEJzvsTgAFlvL3yZu3vhUp1YeYzkJdrdxpV0L4Uqxd4h2E6sJwPcLUQxBpjDgA4f15o8BED/CwiKSIytATbq/LIPwiuetkaemL5eLvTqHOMgZ/+AaEx0PUxu9OoMiDmEkMDi8gsoGohi54BJhhjIgusm2GM+dN5fhGpZozZLyIxwC/AA8aYeSJyrCjbO5cNBYYCxMbGJkyaNOmSO1eYrKwswsLCSrStp/D2ffhDfmNotfqfhGXtZEn7j8gNCLc3XBF4+78/XHwfYtLmEb/xTTY1foCDcT3LOFnRlPfPoLR079495bzT8xZjTIlvwGYgznk/DthchG2eAx4r6fbGGBISEkxJzZkzp8Tbegpv34c/5T+4zpjnIo2Z8YQteYrL2//9jbnIPpzJNubNeGM+6mJMXm6ZZiqOcv0ZlCJguSnkO9XVU0NTgSHO+0OA789fQURCRST83H3gSmBdUbdXPiC2GSTcAUvHQvpmu9P4toXvQ2Yq9HldO4/5EFcLwWtALxHZCvRyPkZEqonIuZHFYoEFIrIaWApMN8b8dLHtlQ/q/gwEhsHMp+1O4ruO74Pf3oH4AVC7k91pVBnyd2VjY8wRoEchz+8H+jrv7wBaFWd75YNCq1gzXv38DGz5GRppL9YyN/t5a+KgXi/YnUSVMe1ZrDxHu6FQuYF1VJB31u40vmXvMljzH+g0HCrVtjuNKmNaCJTn8A+EK1+GI1thyWi70/iO/Dz46UkIqwpd/m53GmUDLQTKszS6yhrcbM4rcGyv3Wl8w/LxVgeyK1+EIO9ukqlKRguB8iwi0PcNwMCMx63OTar0ZB6AWc9D/St0rgEfpoVAeZ5KtSHpH7DlR9g4ze405duPT1jjCV39po4u6sO0ECjP1OE+iG1hfVGdzrQ7Tfm0+UfYONVqrRVVz+40ykZaCJRn8guAa9+FEwfhVx390t38ck9Zp95i4qHTg3bHUTbTQqA8V40Eq0np0rGQuvzS66siq7NrIhzfC9e8YxVd5dO0ECjPdsWzEB4H0x7SvgXucmA1NVKnWbPE1WpvdxrlAbQQKM8WHAF9R0LaOmvaROWa/DyY9hBnAyKgxwi70ygPoYVAeb4m10DjvjDnVcjYbXca77Z0LOxfydaGd0NIpN1plIfQQqA8nwj0/ReIwzpFlJ9vdyLvlLHLuvDeoBfp0V3sTqM8iBYC5R0q1rB6vu6YA0vH2J3G++TlwuR7QPzgmre1z4D6Ay0Eynsk3gUNr4Jf/gmHNtqdxrsseBv2LoZr3oLImnanUR5GC4HyHiLQ/wMICodv74bcM3Yn8g6pKZD8qjWERIsb7E6jPJAWAuVdwmKg/yirFZF2NLu0M1kw+W9WE9y+b9idRnkolwqBiESJyC8istX5s7CJ6xuLyKoCt0wRedi57DkR2VdgWV9X8igf0bi3dZpo4QewY67daTzbz8/A0R0wcLS2ElIX5OoRwVPAbGNMQ2C28/EfGGM2G2NaG2NaAwnASWBKgVXePrfcGDPj/O2VKtSVL0Hl+jDlXjiVYXcaz7RpBqR8Bp0fgjraSkhdmKuFoD8wwXl/AjDgEuv3ALYbY7QxuHJNYCgMHAvZh+CHR3S46vOdSIOpw6FqC2s+aKUuQowL/4FE5JgxJrLA4wxjzJ9ODxVYPh5YYYz5wPn4OeAOIBNYDjxqjCn0zzsRGQoMBYiNjU2YNGlSiTJnZWURFubdk294+z64M3+t3f+l3s4v2NjkYdKqdnfLa16Kx//7G0OLtS8SeWwtKQlvcjK01p9W8fh9uARvzw/27EP37t1TjDGJf1pgjLnoDZgFrCvk1h84dt66GRd5nUDgMBBb4LlYwA/ryORlYPyl8hhjSEhIMCU1Z86cEm/rKbx9H9yaPy/XmE+uMublasakbXDf616Ex//7z3vTmBERxiz++IKrePw+XIK35zfGnn0AlptCvlMveWrIGNPTGNO8kNv3QJqIxAE4fx66yEv1wToaSCvw2mnGmDxjTD4wFmh3qTxK/YHDD67/xDpVNPEWOHnU7kT22vwjzH4Bml9vjdyqVBG4eo1gKjDEeX8I8P1F1h0ETCz4xLki4nQd1pGGUsVTsTrc/CVk7of/DvHdUUoPbYJv/wZxLaHfB9p7WBWZq4XgNaCXiGwFejkfIyLVROT3FkAiUsG5fPJ5248UkbUisgboDjziYh7lq2peZk1ks3MezPTBi6Mnj1pHRAEhcMtXEFjB7kTKi/i7srEx5ghWS6Dzn98P9C3w+CRQuZD1Brvy/kr9QetbIW09LPoAYuMh4Q67E5WNvFz45k7I3AdDfrDGZVKqGLRnsSpfej4P9XvA9Mdg90K705SNn5+FHclw9Vs60YwqES0Eqnzx84cbxkOl2vCfwXBsj92JSteKz2HJR9D+PmirB9iqZLQQqPInJBIGTYK8HJh0K5zOtDtR6dj1m9WZrl6S1dNaqRLSQqDKpyoN4YZPreGqvxhY/orB7kXw5Y0QVdfaTz+XLvcpH6eFQJVfDXtaX5L7V5avYrB7EXxxPURUgyHToEKU3YmUl9NCoMq3+H7lqxjsXgRf3mAVgTt+gPCqdidS5YAWAlX+lZdisGexVQTCq2oRUG6lhUD5Bm8vBnsWW6eDwqvCHdO1CCi30kKgfMf5xeDUMbsTFc3uhf8rAkP0SEC5nxYC5VsKFoMx3eDAarsTXZgxsPhjmHDt/4pARNylt1OqmLQQKN8T3w/umAG5OTCuF6RM8LyJbU5nwn/vgJ+ehIZXwt2ztAioUqOFQPmmWu3h3vlQuxNMexC+GwY5J+1OZUlbD2O7w8Zp1pAZt3wFIRec70kpl2khUL4rtArc/i0k/QNWT4RxPeDwVnszrZ4EY3vAmRMwZCp0eViHk1alTguB8m0OP0h6yioIWWkwJgmWjbNOG5WlzP3WUcmUe6B6AtwzTyecV2VGC4FSAA16wD3zIa41TH8UPkiEVRMhP6903zcrHX56Gt5tDWu+hssfhb98ry2DVJnSAUqUOqdidauj1rZZ8OuL8N29sOAt69RR/ABwuPHvplMZsPADWPwR5J6CVrdCtyesUVOVKmMu/WaLyI0isl5E8kUk8SLr9RaRzSKyTUSeKvB8lIj8IiJbnT/1ipiylwg07AVD58JNn4M4rElfRne1zt+fOFjy187Pt5qrznkV3m0F89+ARlfB/UthwCgtAso2rh4RrAMGAqMvtIKI+AGjsKaqTAWWichUY8wG4ClgtjHmNWeBeAp40sVMSrlOxGpm2uRqWPctJL9qnb8HLqtQE072gbrdoE7nC7foMQaO7rAmjdk5F3bOh1NHrWWN+sAVz0DVFmWzP0pdhKtTVW4EkIu3amgHbDPG7HCuOwnoD2xw/kxyrjcBSEYLgfIkDj9oeRM0vx4OroWdczmzfAqhK7+ApWOsI4ZKdcFx7r9Sgf4IZ07AiQPW/Yjq0Kg31OsGdbtag8Yp5SHEuKEjjYgkA48ZY5YXsuwGoLcx5m7n48FAe2PMcBE5ZoyJLLBuhjGm0D+vRGQoMBQgNjY2YdKkSSXKmpWVRVhYWIm29RTevg/lIX94hSAiMrcSeWwNodmFz4KW7wggM6IJGZVaciqkmkc1Ay0Pn4E35wd79qF79+4pxpg/nca/5BGBiMwCCmvC8Iwx5vsivHdhv/3Frj7GmDHAGIDExESTlJRU3JcAIDk5mZJu6ym8fR/KQ/5uSUlYZzsvzlPb/pSHz8Cb84Nn7cMlC4ExpqeL75EK1CzwuAaw33k/TUTijDEHRCQOOOTieymllCqmsuhHsAxoKCJ1RSQQuAWY6lw2FRjivD8EKMoRhlJKKTdytfnodSKSCnQEpovITOfz1URkBoAxJhcYDswENgJfG2PWO1/iNaCXiGzFOs5+zZU8Simlis/VVkNTgCmFPL8f6Fvg8QxgRiHrHQF6uJJBKaWUa3SICaWU8nFaCJRSysdpIVBKKR+nhUAppXycW3oWlzURSQd2l3DzKsBhN8axg7fvg+a3n7fvg7fnB3v2obYxJvr8J72yELhCRJYX1sXam3j7Pmh++3n7Pnh7fvCsfdBTQ0op5eO0ECillI/zxUIwxu4AbuDt+6D57eft++Dt+cGD9sHnrhEopZT6I188IlBKKVWAFgKllPJxPlUIRKS3iGwWkW3OOZK9ioiMF5FDIrLO7iwlISI1RWSOiGwUkfUi8pDdmYpDRIJFZKmIrHbmf97uTCUhIn4islJEfrA7S0mIyC4RWSsiq0TkT7MiejoRiRSRb0Rkk/P/QkfbM/nKNQIR8QO2YA13nYo1T8IgY8wGW4MVg4h0BbKAfxtjmtudp7ickw/FGWNWiEg4kAIM8JbPQKzJuUONMVkiEgAsAB4yxiy2OVqxiMjfgUQgwhhzjd15iktEdgGJxhiv7FAmIhOA+caYcc45WioYY47ZmcmXjgjaAduMMTuMMTnAJKC/zZmKxRgzDzhqd46SMsYcMMascN4/gTU/RXV7UxWdsWQ5HwY4b171l5SI1ACuBsbZncUXiUgE0BX4BMAYk2N3EQDfKgTVgb0FHqfiRV9C5Y2I1AHaAEtsjlIsztMqq7CmVf3FGONV+YF3gCeAfJtzuMIAP4tIiogMtTtMMdUD0oFPnafnxolIqN2hfKkQSCHPedVfc+WFiIQB3wIPG2My7c5THMaYPGNMa6y5t9uJiNecohORa4BDxpgUu7O4qLMxpi3QB7jfecrUW/gDbYGPjDFtgGzA9uuVvlQIUoGaBR7XAPbblMVnOc+tfwt8aYyZbHeeknIezicDve1NUiydgX7Oc+yTgCtE5At7IxWfcwZEjDGHsGZIbGdvomJJBVILHEl+g1UYbOVLhWAZ0FBE6jov0NwCTLU5k09xXmz9BNhojHnL7jzFJSLRIhLpvB8C9AQ22RqqGIwx/zDG1DDG1MH6/f/VGHO7zbGKRURCnQ0NcJ5SuRLwmlZ0xpiDwF4Raex8qgdge2MJl+Ys9ibGmFwRGQ7MBPyA8caY9TbHKhYRmQgkAVVEJBUYYYz5xN5UxdIZGAysdZ5nB3jaOae1N4gDJjhboDmAr40xXtkE04vFAlOsvynwB74yxvxkb6RiewD40vkH6Q7gTpvz+E7zUaWUUoXzpVNDSimlCqGFQCmlfJwWAqWU8nFaCJRSysdpIVBKKR+nhUAppXycFgKllPJx/w+xe+L4CDSsvQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%%time\n", "!date\n", "\n", "import numpy as np\n", "from matplotlib import pyplot\n", "%matplotlib inline\n", "\n", "x = np.linspace(1E-3, 2 * np.pi)\n", "\n", "pyplot.plot(x, np.sin(x) / x)\n", "pyplot.plot(x, np.cos(x))\n", "pyplot.grid()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }